

CS-523 Advanced Topics on Privacy Enhancing Technologies

Privacy-preserving data publishing (Part I)

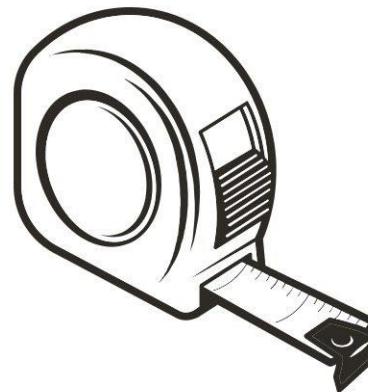
Theresa Stadler
SPRING Lab
theresa.stadler@epfl.ch

- Some slides/ideas adapted from: Carmela Troncoso, Jean-Pierre Hubaux, Vitaly Shmatikov

Introduction Anonymization

Course aim: learn **toolbox for privacy engineering**

tool
to eliminate links
between data and
individuals



mechanism
to evaluate privacy

Application Layer

Network Layer

Goals

What should you learn today?

- Basic understanding of **anonymization**
- Understand **key pitfalls** of anonymization:
 - Belief that removing personal identifiable information is enough
 - Belief that we can constrain the knowledge of the adversary
 - Ignore that **high-dimensionality** and **sparsity** imply that individuals are **uniquely identifiable**
- Understand **reasoning and metrics** to evaluate anonymization
- Understand **practical issues** when anonymizing high-dimensional datasets

The promised benefits of data-driven everything...

Better governmental services

Improved health outcomes

A more efficient, greener industrial production

...have a flip side

Use and misuse

Data can be used for good... and for bad

Potential harms

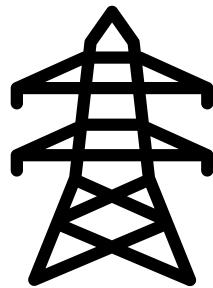
Surveillance, control and manipulation

False conclusions

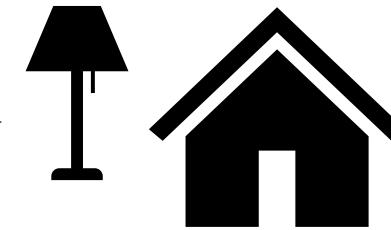
Data bias and processing errors can have a strong impact on people's life

Utility data used by ICE in the US

National Consumer Telecom & Utilities Exchange (NCTUE) collects utilities data for credit assessment



NCTUE



171M customers
(~50% US population)

U.S. Immigration and Customs Enforcement

Is your utility company telling ICE where you live?

Nina Wang · Follow

Published in Center on Privacy & Technology at Georgetown Law · 6 min read · Feb 26, 2021

A secretive utilities data exchange could be selling out your name and home address to immigration enforcement.

Laws and regulations require that personal data are **protected**
→ not leak much about individuals & not used for unforeseen purposes

Universal Declaration of Human Rights

Article 12. “No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to attacks upon his honor and reputation. **Everyone has the right to the protection of the law against such interference or attacks.**”

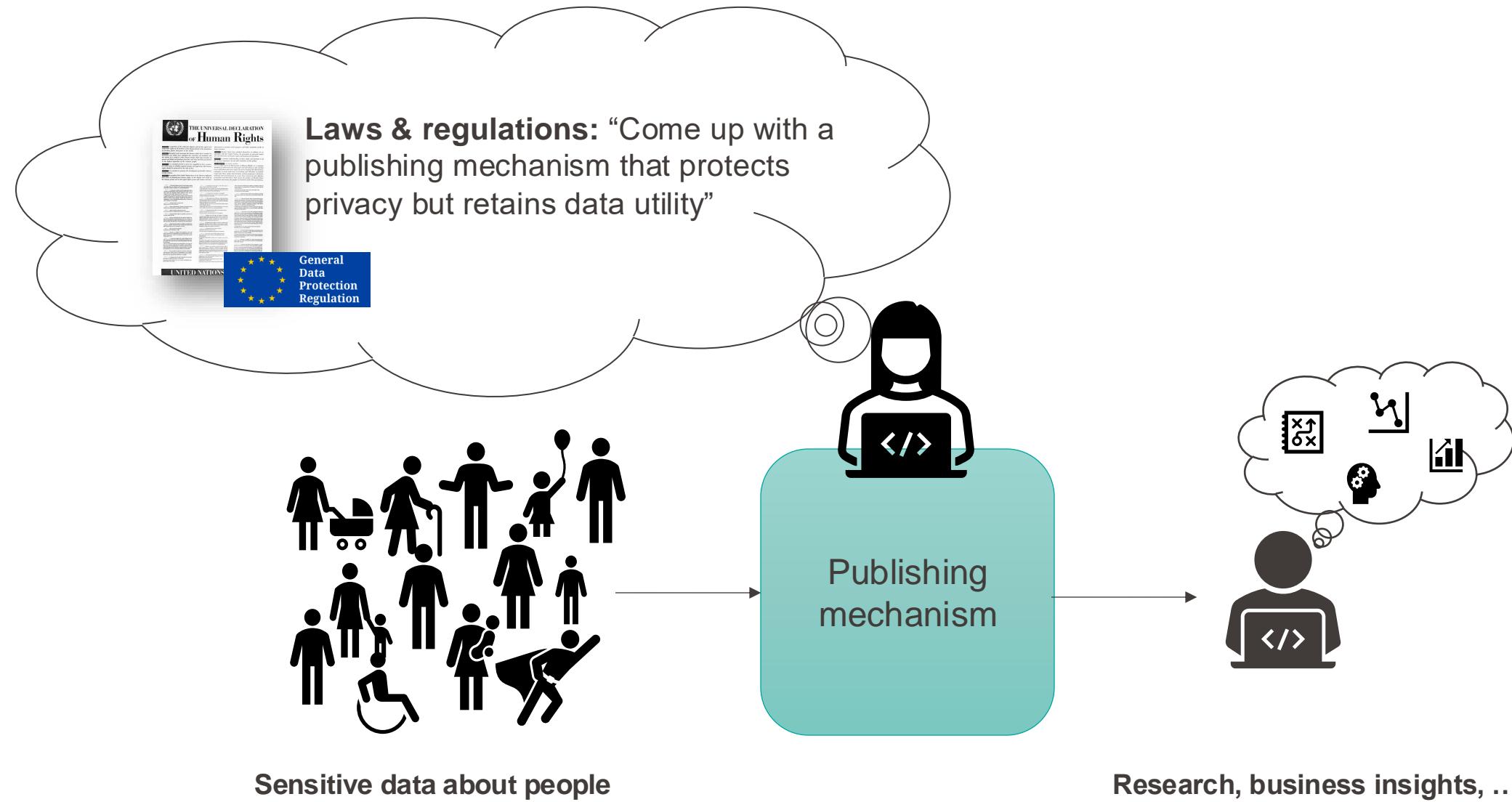
10 December 1948, <http://www.un.org/en/universal-declaration-human-rights/>

GDPR

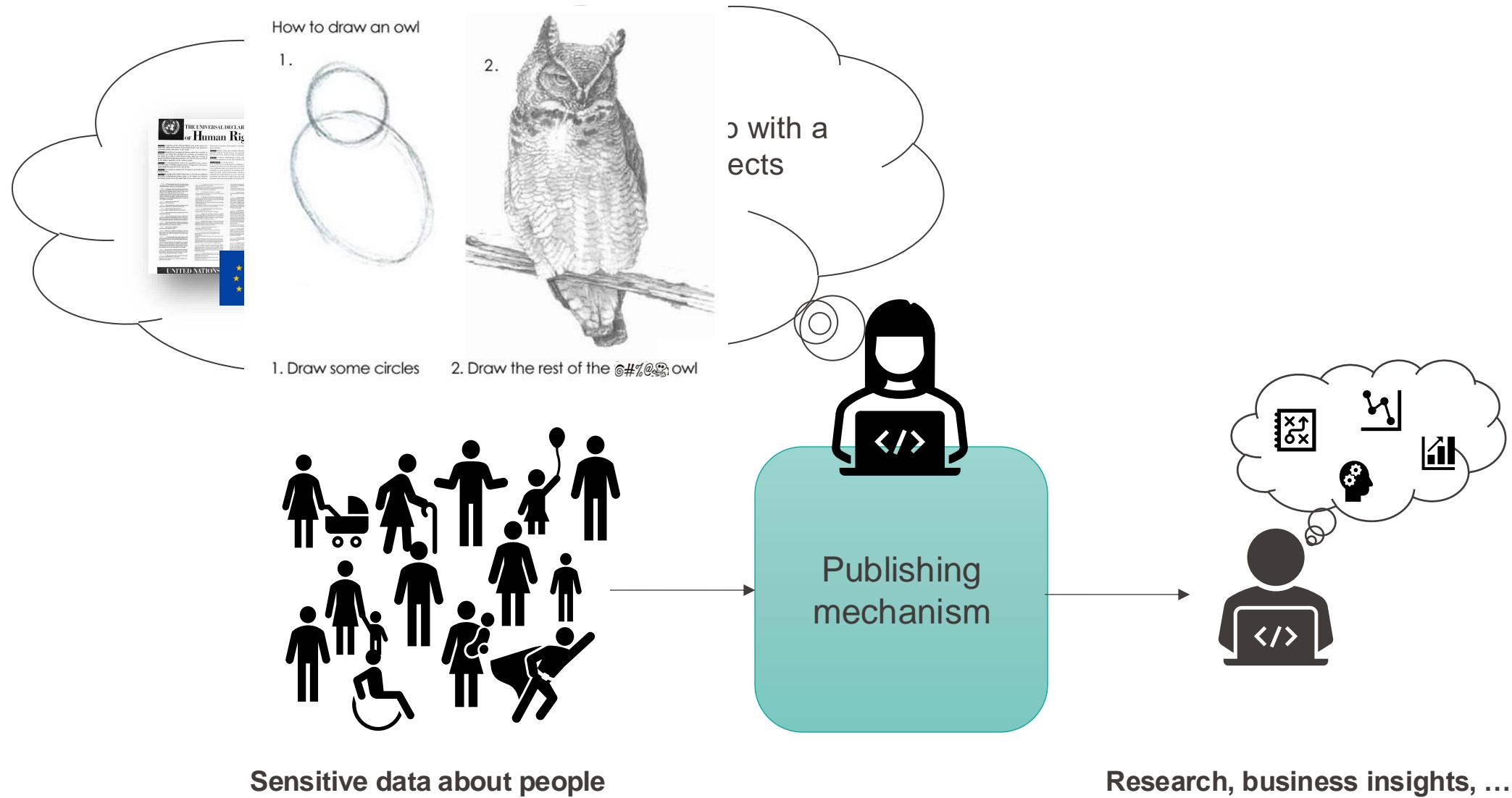
Article 1. **“personal data** means any information relating to an identified or identifiable natural person ('data subject'); an identifiable natural person is one who can be identified, directly or indirectly, in particular by reference to an identifier such as a name, an identification number, location data, an online identifier or to one or more factors specific to the physical, genetic, ...” ;

25 May 2018, <https://www.eugdpr.org>

And in practice?



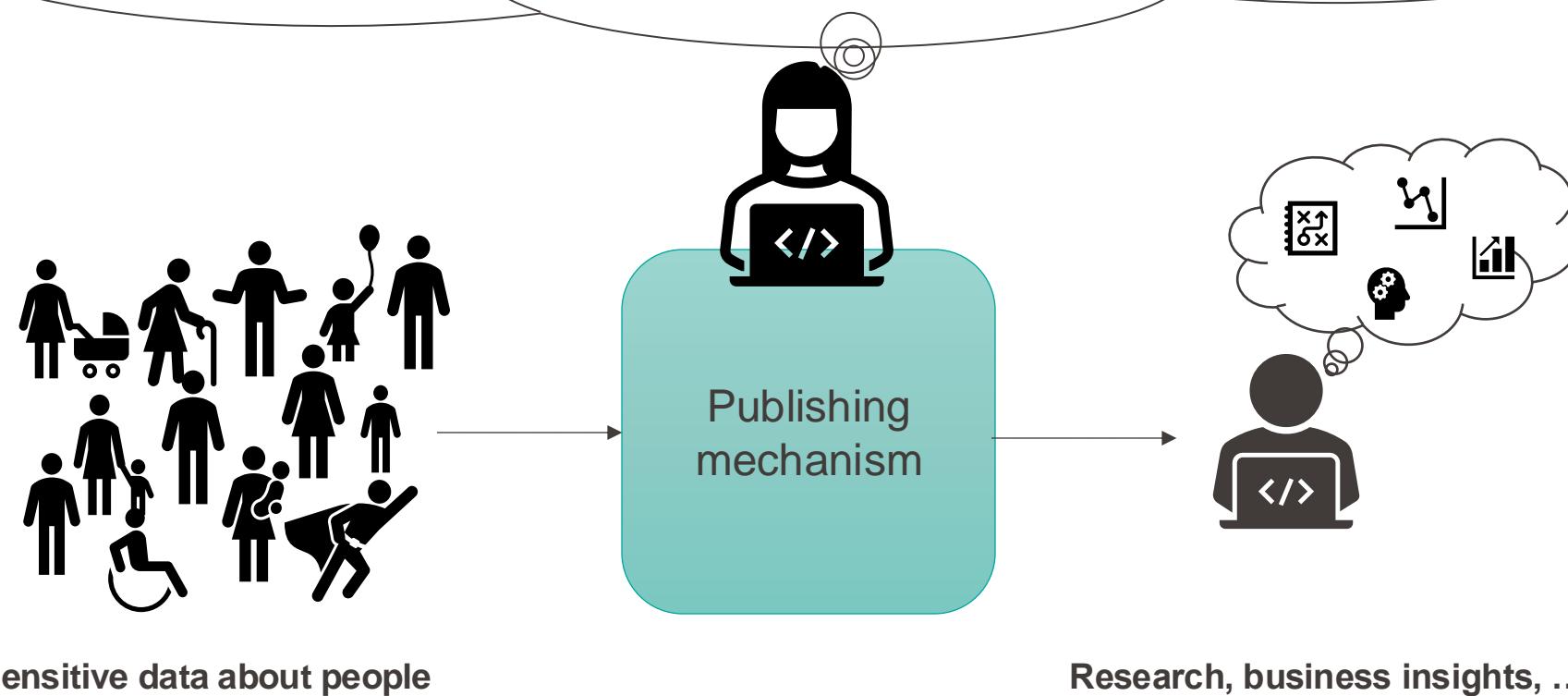
And in practice?!?!?!



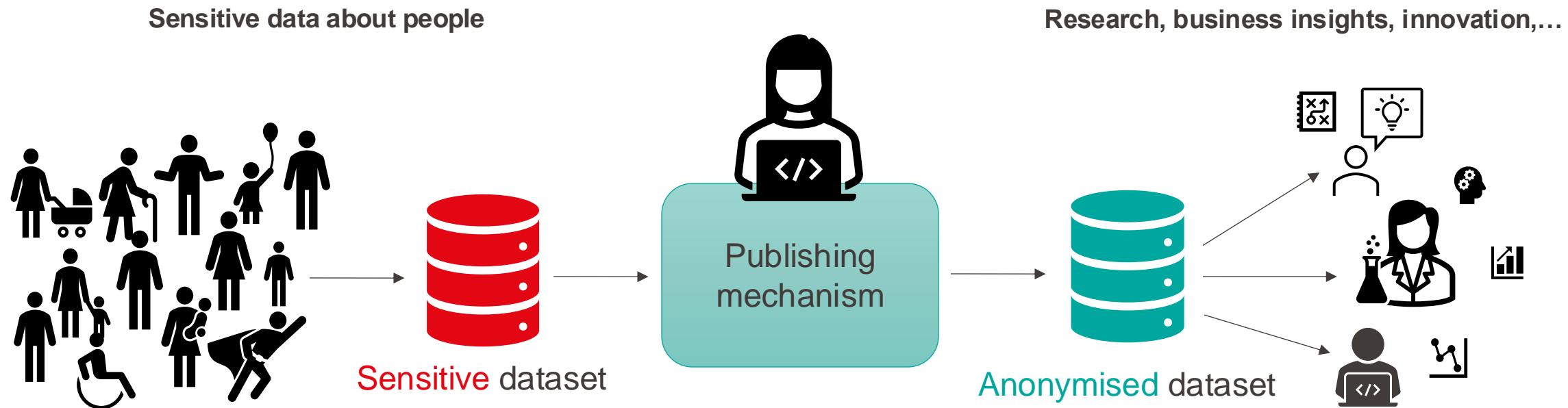
The key question

How to publish useful sensitive data in a privacy-preserving way?

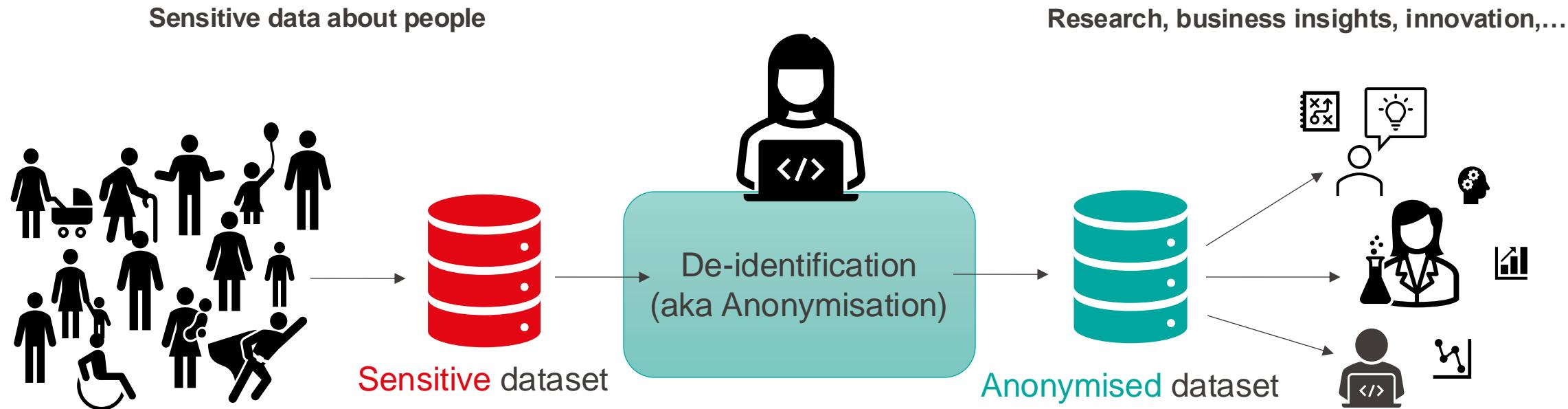
(broad definition of publish: share, publish internally,... anything beyond collection)



Privacy-preserving microdata sharing



Privacy-preserving microdata sharing



Mask or Remove Personally Identifiable Information (PII):
name, SSN, phone number, address, email, twitter handle,...

Naïve “de-identification” fails

Real life example



Date_of_birth	ZIP code	ethnicity	procedure
07/07/1960	1024	caucasian	chemotherapy
...

Date_of_birth	ZIP code	ethnicity
07/07/1960	1024	caucasian
...

- In Massachusetts, Group Insurance Commission (GIC) collected patient-specific data about ~135K state employees and their families
 - Data contained nearly one hundred attributes: Ethnicity, Visit date, Diagnosis, Procedure, Medication, Total charge, ZIP, Birth date, Sex
- The data had no PII so was believed to be anonymous
- Latanya Sweeney (PhD student) bought voting records in Massachusetts (20\$).
 - Voting records included: ZIP, Birth date, Sex, Name, Address, Date registered, Party affiliation, Date last voted
- Partial matching allowed to learn sensitive health information about governor of Massachusetts

15 years later...

“newspaper stories about hospital visits in Washington State leads to identifying the matching health record 43% of the time”

Record	
Hospital	162: Sacred Heart Medical Center in Providence
Admit Type	1: Emergency
Type of Stay	
Length of Stay	6 days
Discharge Date	Oct-2011
Discharge Status	under the care of an health service organization
Charges	\$71708.47
Payers	1: Medicare 6: Commercial insurance 625: Other government sponsored patients
Emergency Codes	E8162: motor vehicle traffic accident due to loss of control; loss control mv-mocyc
Diagnosis Codes	80843: closed fracture of other specified part of pelvis 51851: pulmonary insufficiency following trauma & surgery 2761: hypomotility for hypotremia 78057: tachycardia 2851: acute non- orrrhagic anemia
Age in Years	60
AGE IN MONTHS	725
Gender	Male
ZIP	98851
State Reside	WA
Race/Ethnicity	White, Non-Hispanic

MAN, 60, THROWN FROM MOTORCYCLE
A 60-year-old Soap Lake man was hospitalized Saturday afternoon after he was thrown from his motorcycle. Ronald Jameson was riding his 2003 Harley-Davidson north on Highway 25, when he failed to negotiate a curve to the left. His motorcycle became airborne before landing in a wooded area. Jameson was thrown from the bike; he was wearing a helmet during the 12:24 p.m. incident. He was taken to Sacred Heart Hospital. The police cited speed as the cause of the crash.
[News Review 10/18/2011]

This work from Sweeney prompted Washington state to change their access control policy to health records

How to define privacy threats in data publishing?

Data publishing privacy threats

What is a **privacy threat** in data publishing?

Must be defined in contrast to the intended purpose of the data publishing

Defined by their capacity, attack strategy, prior knowledge

An **unauthorized disclosure** occurs when an **attacker** gains unauthorized access to **sensitive data**

What new information does the attacker learn about whom?

Data publishing privacy threats

Membership disclosure: an individual's data is **in** a dataset of sensitive nature

Think: Dataset of criminal records, dataset of highly contagious diseases, dataset about harassed victims

Date_of_birth	ZIP code	gender	sensitive
07/07/1960	1024	female	value1
01/09/1976	1015	male	value1
01/08/1987	1024	male	value1
12/09/1976	1025	female	value1
01/08/1999	1023	male	value1
...

Also sometimes called table linkage

Data publishing privacy threats

Attribute disclosure: an individual's data is in a dataset, and this individual's anonymity set has a unique sensitive attribute

Think: Individual's anonymity set only contains sexual assaults, only contains patients with AIDS, only contains transgender victims

Date_of_birth	ZIP code	gender	sensitive
07/07/1960	1024	female	value2
01/09/1976	1015	male	value1
01/08/1987	1024	male	value2
12/09/1976	1025	female	value2
01/08/1999	1023	male	value1
...

Target

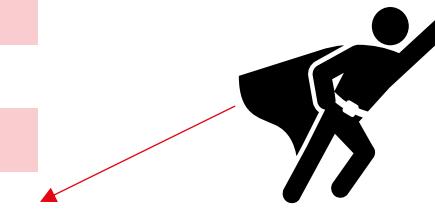
Also sometimes called attribute inference

Data publishing privacy threats

Record disclosure: an individual's data is in a dataset, and this individual's anonymity set contains **only one record**

Think: Individual assault's date and place, date of contracting AIDS and reason, date of harassment and place

Date_of_birth	ZIP code	gender	sensitive
07/07/1960	1024	female	value2
01/09/1976	1015	male	value1
01/08/1987	1024	male	value2
12/09/1976	1025	female	value2
01/08/1999	1023	male	value1
...

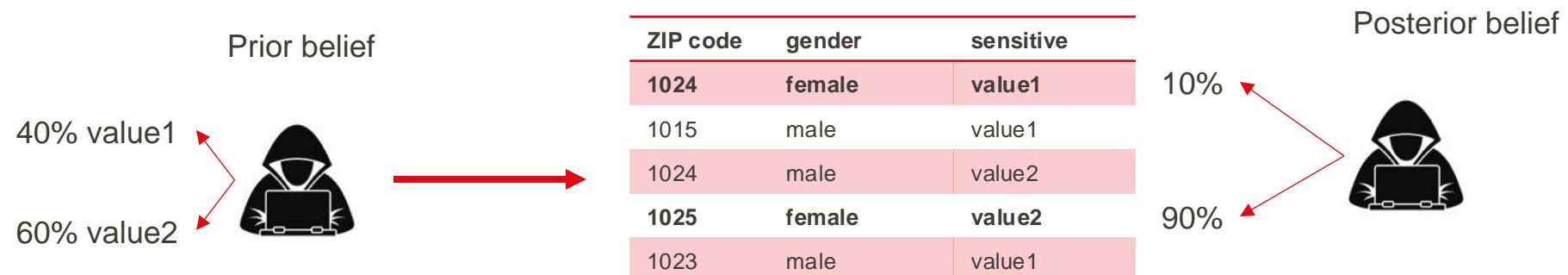


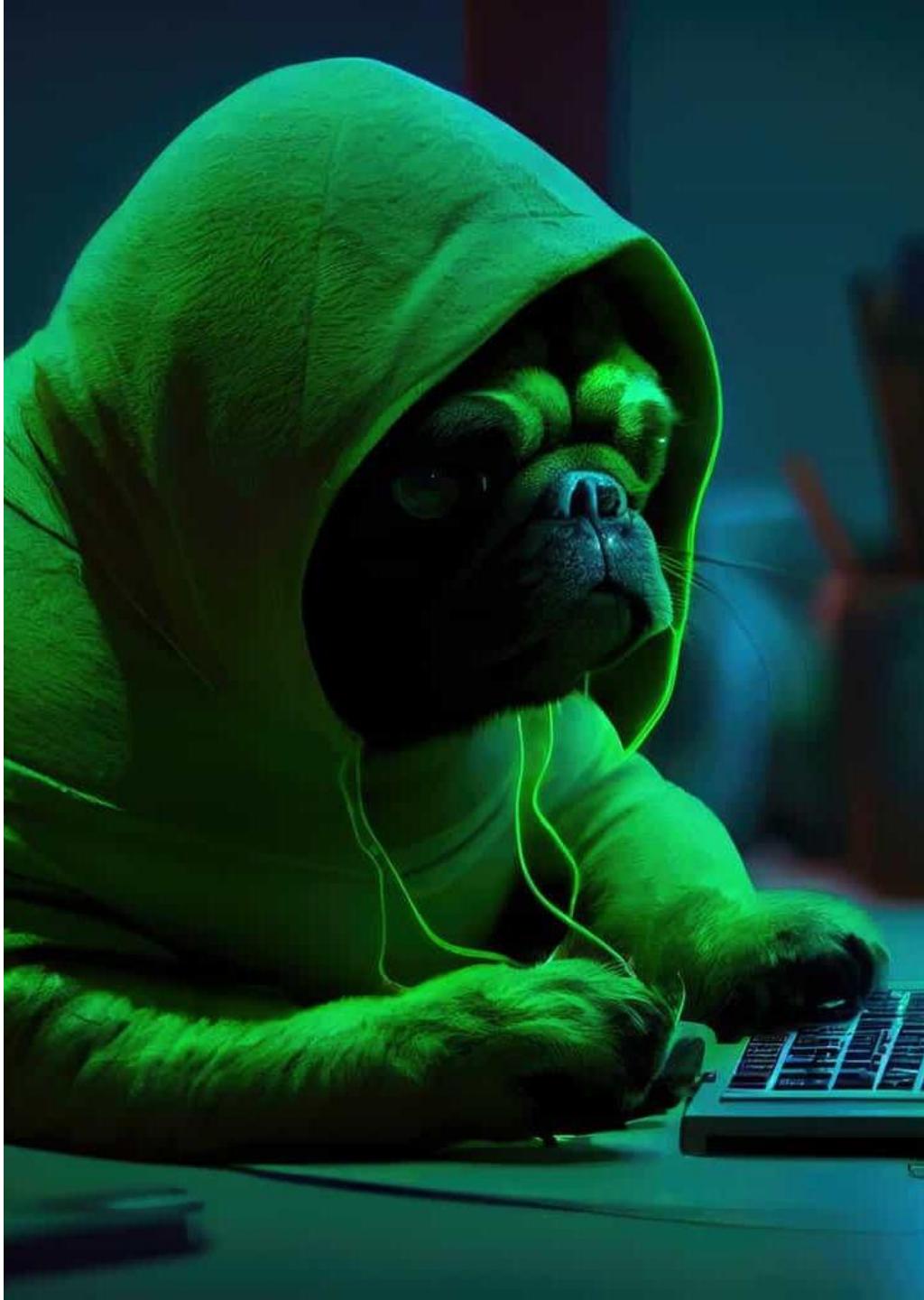
Target

Also sometimes called singling out, re-identification, unique record linkage

Data publishing privacy threats

Disclosure can be probabilistic or certain





Case study: The Airbnb Lighthouse project

Case study: Airbnb Lighthouse project

- **Airbnb has a problem:** Gap in booking acceptance rates based on users' perceived race
 - See #AirbnbWhileBlack
- **Intended purpose:** Measure discrepancies in Airbnb guest acceptance rates to tackle discrimination
- **Privacy concern:** An internal attacker might learn perceived race of users (primary concern is attribute disclosure)
- **Key question:** How to tag users' profiles with perceived race and measure gap in acceptance rates while preventing privacy violations?

Case study: Airbnb Lighthouse project

AirBnB land

UserId	name	photo	hometown	education	hobbies	n_accept	n_reject
1	John	URL1	Athens/GA	None	Basketball	6	1
2	Carla	URL2	Boston/MA	PhD	Running	4	2
3	Nathan	URL3	Seattle/WA	BSc	Basketball	10	2
4	Darnell	URL4	Atlanta/GA	High School	Basketball	2	4

Airbnb privacy risks

Problem 1: Direct identifiers

Direct identifier	name	hometown	education	hobbies	n_accept	n_reject	Sensitive attribute
	John	Athens/GA	None	Basketball	6	1	White
	Carla	Boston/MA	PhD	Running	4	2	Latino
	Nathan	Seattle/WA	BSc	Basketball	10	2	White
	Darnell	Atlanta/GA	High School	Basketball	2	4	Black
	Erena	Cambridge/MA	MSc	Running	6	0	White
	Jamal	Redmond/WA	BSc	Basketball	3	3	Black
	Raven	Seattle/WA	BSc	Basketball	2	4	Black
	Ben	Macon/GA	High School	Basketball	2	2	Asian
	Molly	Salem/MA	MSc	Running	4	1	White
	Markus	Spokane/WA	BSc	Basketball	3	1	White

Case study: Airbnb Lighthouse project

AirBnB land

UserId	name	photo	hometown	education	hobbies	n_accept	n_reject
1	John	URL1	Athens/GA	None	Basketball	6	1
2	Carla	URL2	Boston/MA	PhD	Running	4	2
3	Nathan	URL3	Seattle/WA	BSc	Basketball	10	2
4	Darnell	URL4	Atlanta/GA	High School	Basketball	2	4

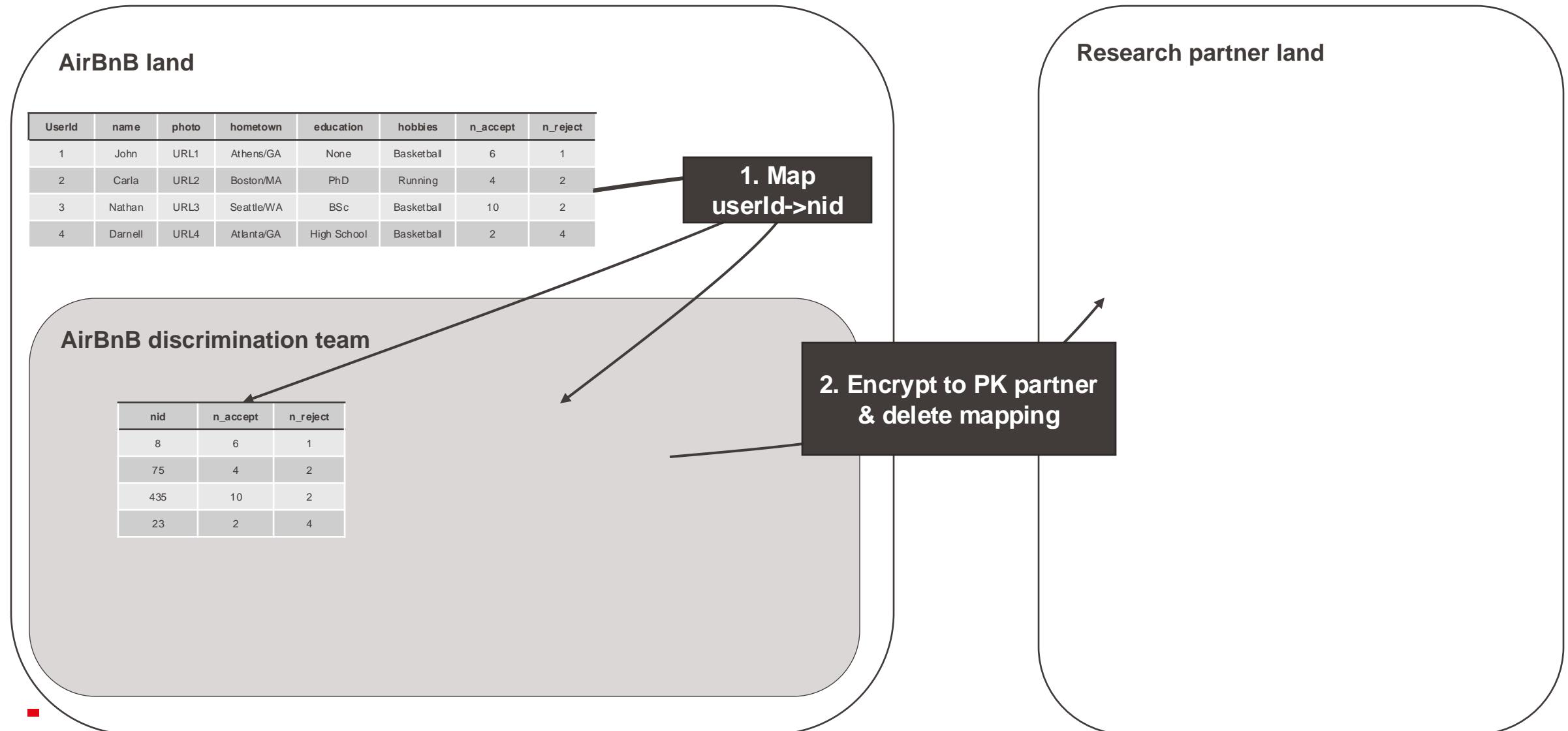
1. Map
userId->nid

AirBnB discrimination team

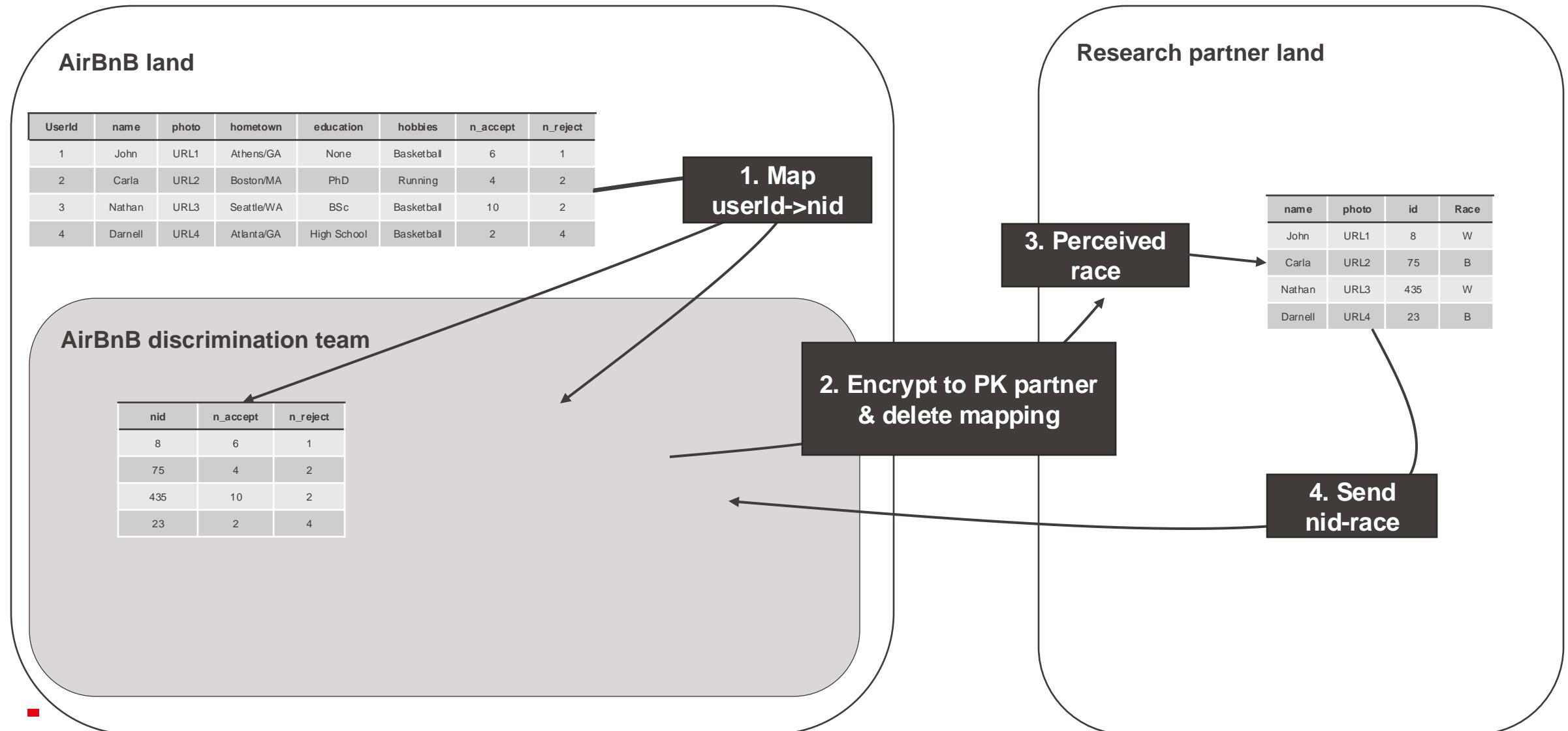
nid	n_accept	n_reject
8	6	1
75	4	2
435	10	2
23	2	4

name	photo	nid
John	URL1	8
Carla	URL2	75
Nathan	URL3	435
Darnell	URL4	23

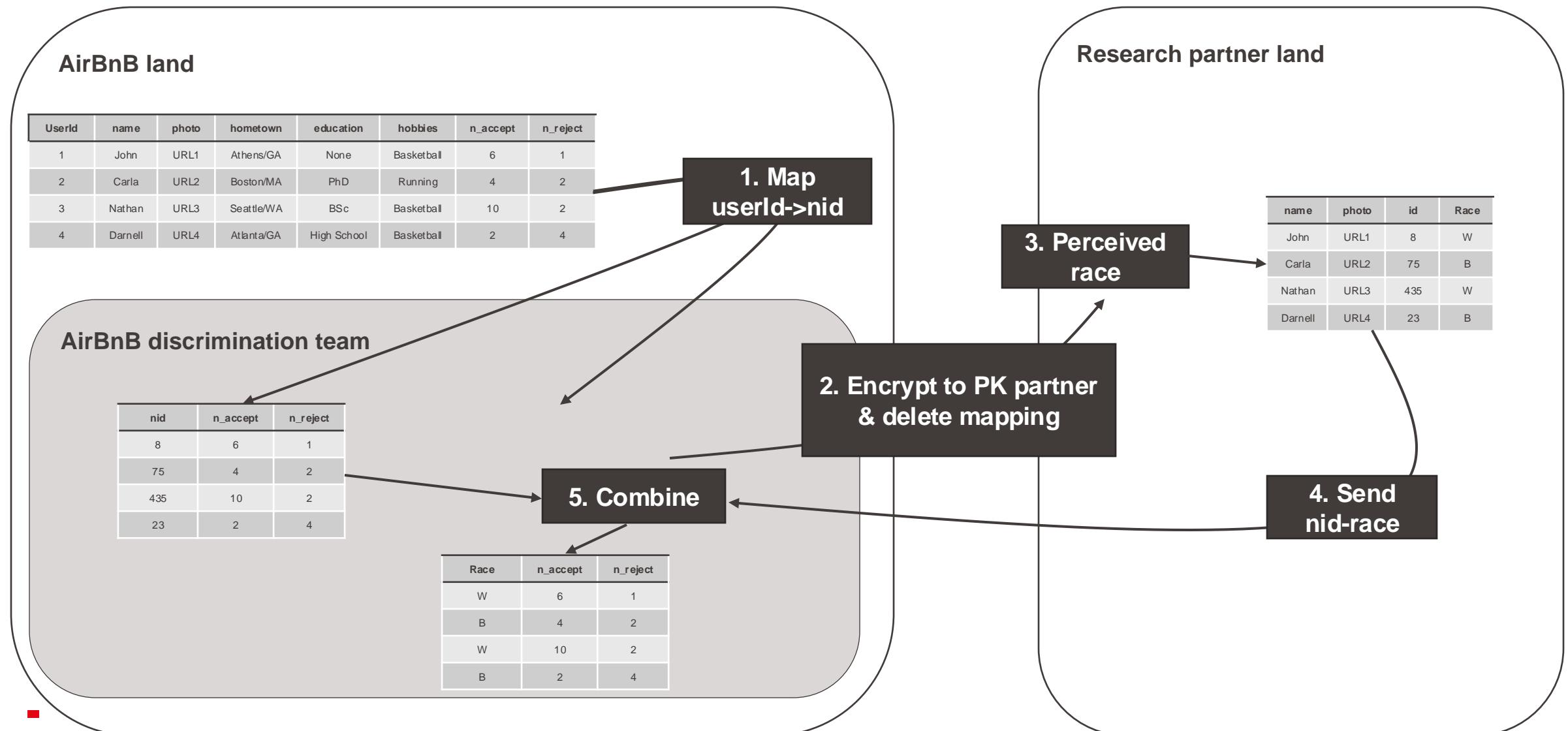
Case study: Airbnb Lighthouse project



Case study: Airbnb Lighthouse project



Case study: Airbnb Lighthouse project



Airbnb privacy risks

Problem 2: Quasi-identifiers

Masked identifier	Quasi-identifier				Sensitive attribute	
nid	hometown	education	hobbies	n_accept	n_reject	race
45	Athens/GA	None	Basketball	6	1	White
245	Boston/MA	PhD	Running	4	2	Latino
23	Seattle/WA	BSc	Basketball	10	2	White
78	Atlanta/GA	High school	Basketball	2	4	Black
92	Cambridge/MA		Running	6	0	White
12	Redmond/WA	BSc	Basketball	3	3	Black
99	Seattle/WA	BSc	Basketball	2	4	Black
128	Macon/GA	High School	Basketball	2	2	Asian
67	Salem/MA	MSc	Running	4	1	White
43	Spokane/WA	BSc	Basketball	3	1	White

**k-anonymity, l-diversity,
t-closeness, and the
likes...**

Each person contained in the database
cannot be distinguished from at least $k-1$ other individuals whose
information also appears in the released database.

k-anonymity

Privacy

- Given a table D, find a table D' such that
 - D' satisfies the k-anonymity condition

name	gender	zipcode	problem
John	male	1012	Cancer
Zoey	female	1003	Flu
Nathan	male	1004	Heart Disease
Lucas	male	1005	Heart Disease
Sam	male	1004	Flu
Max	male	1012	Cancer
Mathias	male	1005	HIV+
Sarah	female	1012	Herpes
Julia	female	1012	Flu

- To ensure anonymity, quasi-identifying attributes can be:
 - *generalized*
 - *suppressed*
- The process of making the database k-anonymous is called **database sanitization**.

name	gender	zipcode	problem	
John	*	1012	Cancer	●
Zoey	*	100*	Flu	●
Nathan	*	100*	Heart Disease	●
Lucas	*	100*	Heart Disease	●
Sam	*	100*	Flu	●
Max	*	1012	Cancer	●
Mathias	*	100*	HIV+	●
Sarah	*	1012	Herpes	●
Julia	*	1012	Flu	●

$k=4$

k-anonymity through generalisation

Masked identifier	Quasi-identifier				Sensitive attribute	
	nid	hometown	education	hobbies	n_accept	n_reject
45	Athens/GA	None	Basketball	6	1	White
245	Boston/MA	PhD	Running	4	2	Latino
23	Seattle/WA	BSc	Running	10	2	White
78	Atlanta/GA	High School	Basketball	2	4	Black
92	Cambridge/MA	MSc	Running	6	0	White
12	Redmond/WA	BSc	Basketball	3	3	Black
99	Seattle/WA	BSc	Running	2	4	Black
128	Macon/GA	High School	Basketball	2	2	Asian
67	Salem/MA	MSc	Running	4	1	White
43	Spokane/WA	BSc	Basketball	3	1	White

k-anonymity through generalisation

Masked identifier	Quasi-identifier				Sensitive attribute	
	nid	gen(hometown)	gen(education)	hobbies	n_accept	n_reject
45	GA	Low	Basketball	6	1	White
245	MA	High	Running	4	2	Latino
23	WA	Mid	Running	10	2	White
78	GA	Low	Basketball	2	4	Black
92	MA	High	Running	6	0	White
12	WA	Mid	Basketball	3	3	Black
99	WA	Mid	Running	2	4	Black
128	GA	Low	Basketball	2	2	Asian
67	MA	High	Running	4	1	White
43	WA	Mid	Basketball	3	1	White

k-anonymity through generalisation

Masked identifier	Quasi-identifier				Sensitive attribute	
	nid	gen(hometown)	gen(education)	hobbies	n_accept	n_reject
45	GA	Low	Basketball	6	1	White
245	MA	High	Running	4	2	Latino
23	WA	Mid	Running	10	2	White
78	GA	Low	Basketball	2	4	Black
92	MA	High	Running	6	0	White
12	WA	Mid	Basketball	3	3	Black
99	WA	Mid	Running	2	4	Black
128	GA	Low	Basketball	2	2	Asian
67	MA	High	Running	4	1	White
43	WA	Mid	Basketball	3	1	White

$k=2$

k-anonymity through suppression

Masked identifier	Quasi-identifier				Sensitive attribute		
	nid	gen(hometown)	gen(education)	hobbies	n_accept	n_reject	race
45	GA	Low	*	*	6	1	White
245	MA	High	*	*	4	2	Latino
23	WA	Mid	*	*	10	2	White
78	GA	Low	*	*	2	4	Black
92	MA	High	*	*	6	0	White
12	WA	Mid	*	*	3	3	Black
99	WA	Mid	*	*	2	4	Black
128	GA	Low	*	*	2	2	Asian
67	MA	High	*	*	4	1	White
43	WA	Mid	*	*	3	1	White

k-anonymity through suppression

Masked identifier	Quasi-identifier				Sensitive attribute	
nid	gen(hometown)	gen(education)	hobbies	n_accept	n_reject	race
45	GA	Low	*	6	1	White
245	MA	High	*	4	2	Latino
23	WA	Mid	*	10	2	White
78	GA	Low	*	2	4	Black
92	MA	High	*	6	0	White
12	WA	Mid	*	3	3	Black
99	WA	Mid	*	2	4	Black
128	GA	Low	*	2	2	Asian
67	MA	High	*	4	1	White
43	WA	Mid	*	3	1	White

$k=3$

k-anonymity

Privacy... And Utility?

- Given a table D , find a table D' such that
 - D' satisfies the *k-anonymity* condition
 - D' has the **maximum utility** (minimum information loss)
- NP-hard problem.
- Some heuristics exist for some utility metrics.

Actually... For what Airbnb wants

Masked identifier	Quasi-identifier				Sensitive attribute	
nid	Hometown	Education	Hobbies	n_accept	n_reject	race
45	Athens/GA	None	Basketball	6	1	White
245	Boston/MA	PHD	Running	4	2	Latino
23	Seattle/WA	BSc	Running	10	2	White
78	Atlanta/GA	High School	Basketball	2	4	Black
92	Cambridge/MA	MS	Running	6	0	White
12	Richmond/VA	BSc	Basketball	3	3	Black
99	Seattle/WA	BSc	Running	2	4	Black
128	Waco/GA	High School	Basketball	2	2	Asian
67	Seattle/MA	MS	Running	4	1	White
43	Spokane/WA	BSc	Basketball	3	1	White

Actually... For what Airbnb wants

Masked identifier	Quasi-identifier				Quasi-identifier		Sensitive attribute
nid	Hometown	Education	Hobbies		n_accept	n_reject	race
45	Athens/GA	None	Basketball		6	1	White
245	Boston/MA	PHD	Running		4	2	Latino
23	Seattle/WA	BSc	Running		10	2	White
78	Atlanta/GA	High School	Basketball		2	4	Black
92	Cambridge/MA	MS	Running		6	0	White
12	Redmond/WA	BSc	Basketball		3	3	Black
99	Seattle/MA	BSc	Running		2	4	Black
128	Waco/GA	High School	Basketball		2	2	Asian
67	Seattle/MA	MS	Running		4	1	White
43	Spokane/WA	BSc	Basketball		3	1	White

k-anonymise

nid	n_accept	n_reject
45	6	1
245	4	2
23	10	2
78	2	4
92	6	0
12	3	3
99	2	4
128	2	2
67	4	1
43	3	1

Group similar entries

nid	n_accept	n_reject
45, 92	6	[0,1]
245, 67	4	[1,2]
23	10	2
78,99,128	2	[2,4]
12,43	3	[1,3]

k-anonymise

nid	n_accept	n_reject
45	6	1
245	4	2
23	10	2
78	2	4
92	6	0
12	3	3
99	2	4
128	2	2
67	4	1
43	3	1

Group similar entries

nid	n_accept	n_reject
45, 92	6	[0,1]
245, 67	4	[1,2]
23	10	2
78,99,128	2	[2,4]
12,43	3	[1,3]

Suppress the outlier
Take mean for rest

nid	n_accept	n_reject
45, 92	6	0.5
245, 67	4	1.5
78,99,128	2	2.66
12,43	3	2

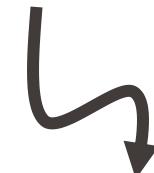
k-anonymise

$k=2$

nid	n_accept	n_reject
45	6	0.5
245	4	1.5
78	2	2.66
92	6	0.5
12	3	2
99	2	2.66
128	2	2.66
67	4	1.5
43	3	2

nid	n_accept	n_reject
45, 92	6	[0,1]
245, 67	4	[1,2]
23	10	2
78,99,128	2	[2,4]
12,43	3	[1,3]

Suppress the outlier
Take mean for rest



nid	n_accept	n_reject
45, 92	6	0.5
245, 67	4	1.5
78,99,128	2	2.66
12,43	3	2

k-anonymise

$k=2$

nid	n_accept	n_reject
45	6	0.5
245	4	1.5
78	2	2.66
92	6	0.5
12	3	2
99	2	2.66
128	2	2.66
67	4	1.5
43	3	2

**Sensitive
attribute**

race
White
Latino
White
Black
White
Black
Black
Asian
White
White

We still learn that:

45 and 92 (users with 6 accepts) are **White**

78, 99, and 128 (users with 2 accepts) **aren't White**

k-anonymity

Privacy... Not guaranteed

Equivalence class

gender	zipcode	problem
*	1012	Cancer
*	100*	Heart Disease
*	1012	Cancer
*	1012	Herpes
*	1012	Flu

Does not provide privacy when sensitive values lack **diversity** !

Example: anyone in the database with zipcode 100* is known to have a heart disease

- An equivalence class has ℓ -diversity if there are at least ℓ **well-represented values for the sensitive attribute**.
- A dataset has ℓ -diversity if every equivalence class has ℓ -diversity.

	ZIP Code	Age	Salary	Disease
1	476**	2*	3K	gastric ulcer
2	476**	2*	4K	gastritis
3	476**	2*	5K	stomach cancer
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
7	476**	3*	7K	bronchitis
8	476**	3*	9K	pneumonia
9	476**	3*	10K	Stomach cancer

A 3-diverse
hospital records
dataset

ℓ -diversity - Limitations

ℓ -diversity does **not consider semantics** of sensitive values

ZIP Code	Age	Salary	Disease
1	476**	2*	3K
2	476**	2*	4K
3	476**	2*	5K
4	4790*	≥ 40	6K
5	4790*	≥ 40	11K
6	4790*	≥ 40	8K
7	476**	3*	7K
8	476**	3*	9K
9	476**	3*	10K

All patients in this equivalence class have stomach issues

ℓ -diversity - Limitations

ℓ -diversity does **not consider distribution** of sensitive values

Original dataset

...	Cancer
...	Cancer
...	Cancer
...	Flu
...	Cancer
...	Flu
...	Flu

99% have cancer

Anonymization A

Q1	Flu
Q1	Flu
Q1	Cancer
Q1	Flu
Q1	Cancer
Q1	Cancer
Q2	Cancer

Q1: 423**, >60
Q2: 423**, <60

Anonymization B

Q1	Flu
Q1	Cancer
Q2	Flu
Q2	Flu

ℓ -diversity - Limitations

ℓ -diversity does **not consider distribution** of sensitive values

Original dataset

...	Cancer
...	Cancer
...	Cancer
...	Flu
...	Cancer
...	Flu
...	Flu

Anonymization A

Q1	Flu
Q1	Flu
Q1	Cancer
Q1	Flu
Q1	Cancer
Q1	Cancer
Q2	Cancer

Anonymization B

Q1	Flu
Q1	Cancer
Q2	Flu
Q2	Flu

99% have cancer

50% cancer \Rightarrow quasi-identifier group is “diverse”
BUT: Leaks a ton of information about Q1

Q1: 423**, >60
Q2: 423**, <60

ℓ -diversity - Limitations

ℓ -diversity does **not consider distribution** of sensitive values

Original dataset

...	Cancer
...	Cancer
...	Cancer
...	Flu
...	Cancer
...	Flu
...	Flu

99% have cancer

Anonymization A

Q1	Flu
Q1	Flu
Q1	Cancer
Q1	Flu
Q1	Cancer
Q1	Cancer
Q2	Cancer

50% cancer \Rightarrow quasi-identifier group is “diverse”
BUT: Leaks a ton of information about Q1

Q2	Cancer
Q2	Cancer
Q2	Cancer

Q1: 423**, >60
Q2: 423**, <60

Anonymization B

Q1	Flu
Q1	Cancer
Q2	Flu

99% cancer \Rightarrow quasi-identifier group is not “diverse”
...yet anonymized database does not leak anything

- An equivalence class has **t-closeness** if the **distance between the distribution of a sensitive attribute in this class and the distribution of the attribute in the whole table is no more than a threshold t**.
- A dataset has t-closeness if all equivalence classes have t-closeness.

So now we have privacy... Right?!

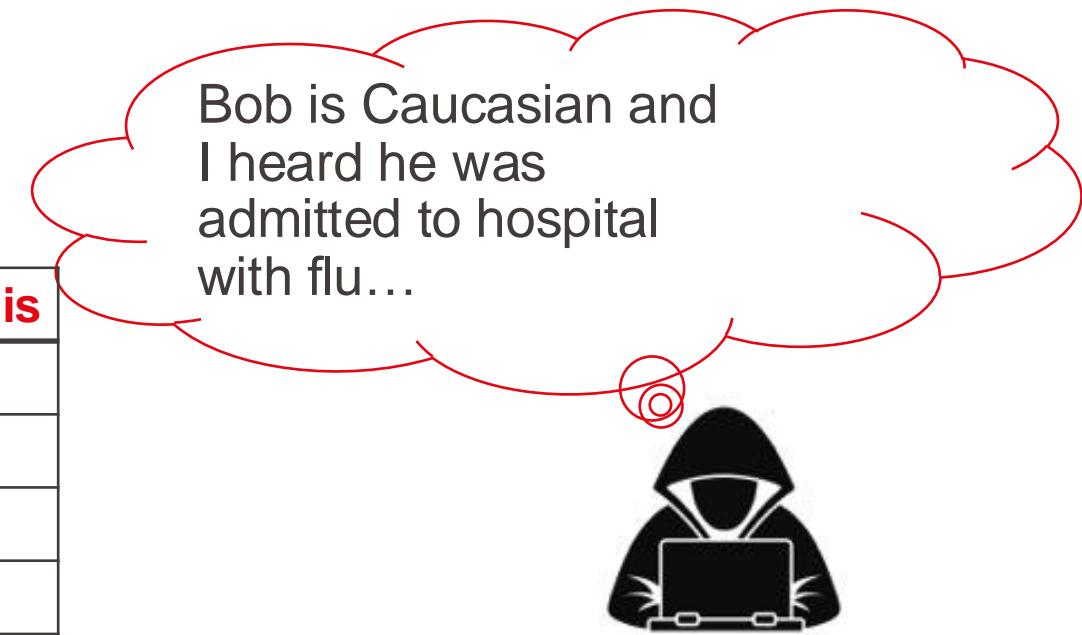
Quasi-identifiers		Sensitive	
Ethnicity	ZIP	HIV	Diagnosis
Caucasian	787XX	HIV+	Flu
Asian	787XX	HIV-	Flu
Asian	787XX	HIV+	Herpes
Caucasian	787XX	HIV-	Acne
Caucasian	787XX	HIV-	Herpes
Caucasian	787XX	HIV-	Acne

This table is k-anonymous,
l-diverse and t-close...

...does it provide privacy?

So now we have privacy... Right?!

Quasi-identifiers		Sensitive	
Ethnicity	ZIP	HIV	Diagnosis
Caucasian	787XX	HIV+	Flu
Asian	787XX	HIV-	Flu
Asian	787XX	HIV+	Herpes
Caucasian	787XX	HIV-	Acne
Caucasian	787XX	HIV-	Herpes
Caucasian	787XX	HIV-	Acne



So now we have privacy... Right?!

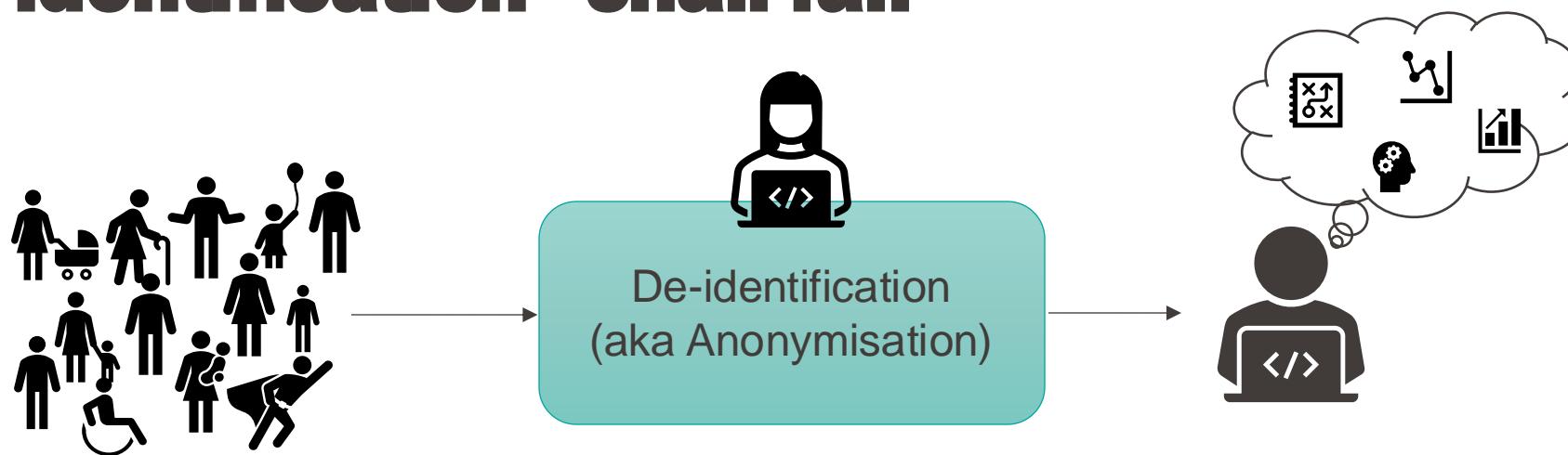
Quasi-identifiers

Sensitive

Ethnicity	ZIP	HIV	Diagnosis
Caucasian	787XX	HIV+	Flu
Asian	787XX	HIV-	Flu
Asian	787XX	HIV+	Herpes
Caucasian	787XX	HIV-	Acne
Caucasian	787XX	HIV-	Herpes
Caucasian	787XX	HIV-	Acne

Bob is Caucasian and I heard he was admitted to hospital with flu...

“De-identification” shall fail



Adversary's knowledge: We cannot predict what **auxiliary data** may be available to the adversary

+

The curse of dimensionality: High-dimensional data is sparse. The more you know about individuals, the less likely it is that two individuals will look alike

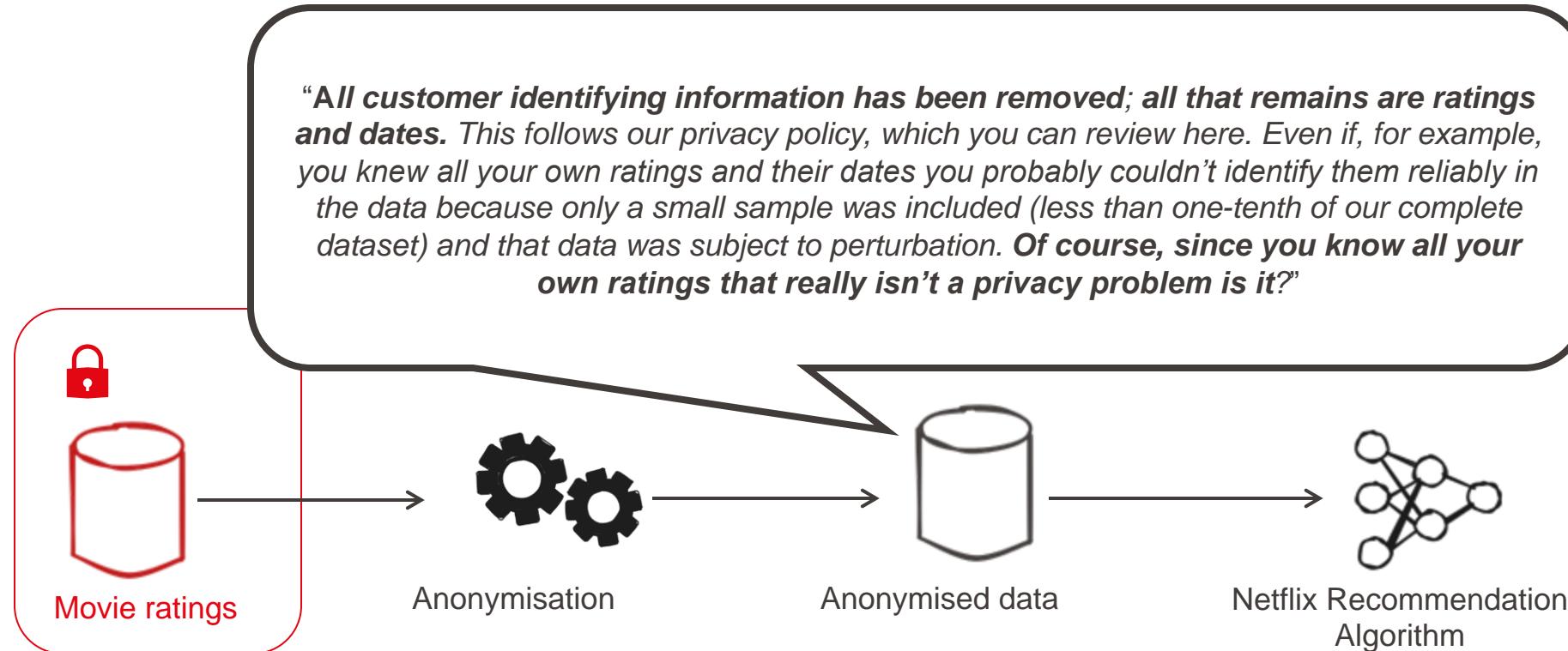
=

Supposedly anonymized data can be re-identified with a **linkage attack**

The curse of dimensionality

“De-identification” shall fail

Another real-life example

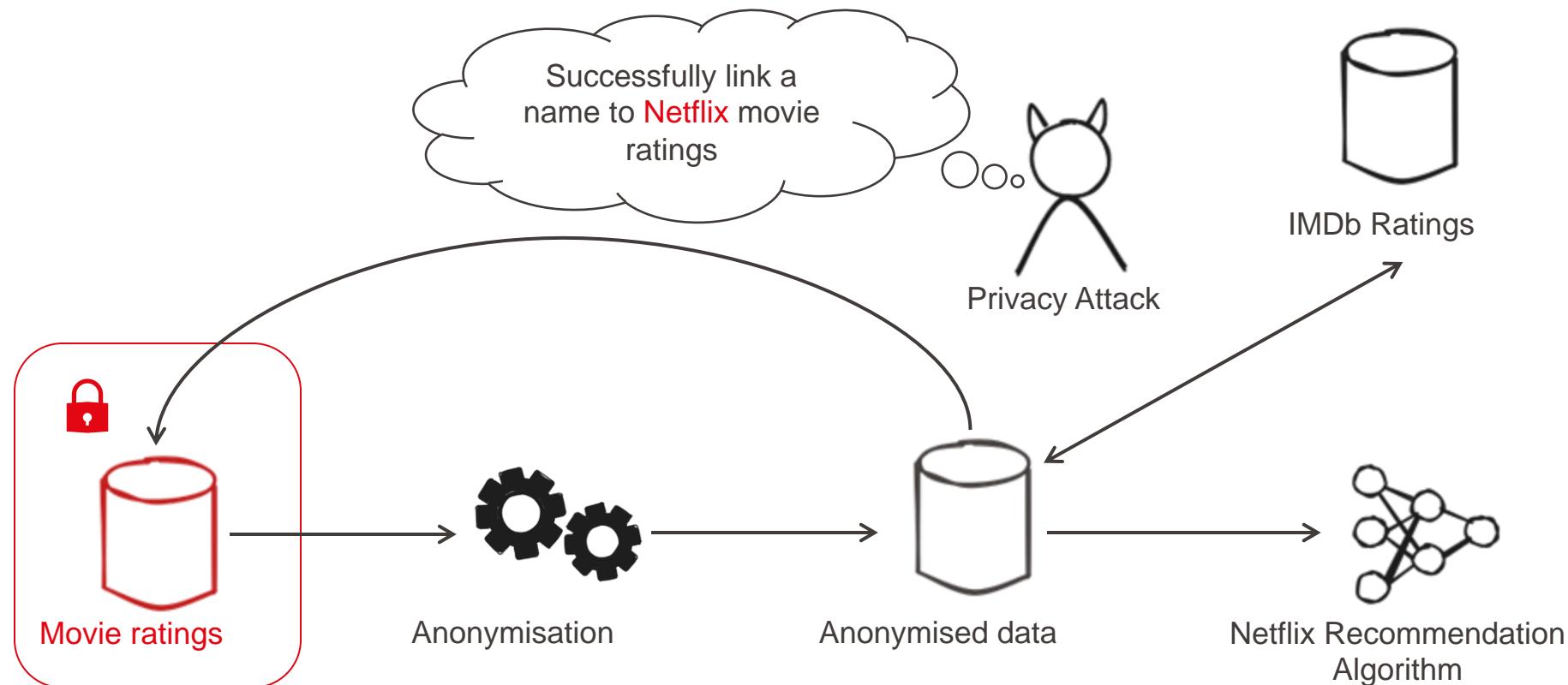


user	pulp_fiction	fight_club	the_minions
theresa	3/5	3/5	5/5
carmela

	pulp_fiction	fight_club	the_minions
	3/5	3/5	5/5

“De-identification” shall fail

Another real-life example



user	pulp_fiction	fight_club	the_minions
theresa	3/5	3/5	5/5
carmela

- https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf

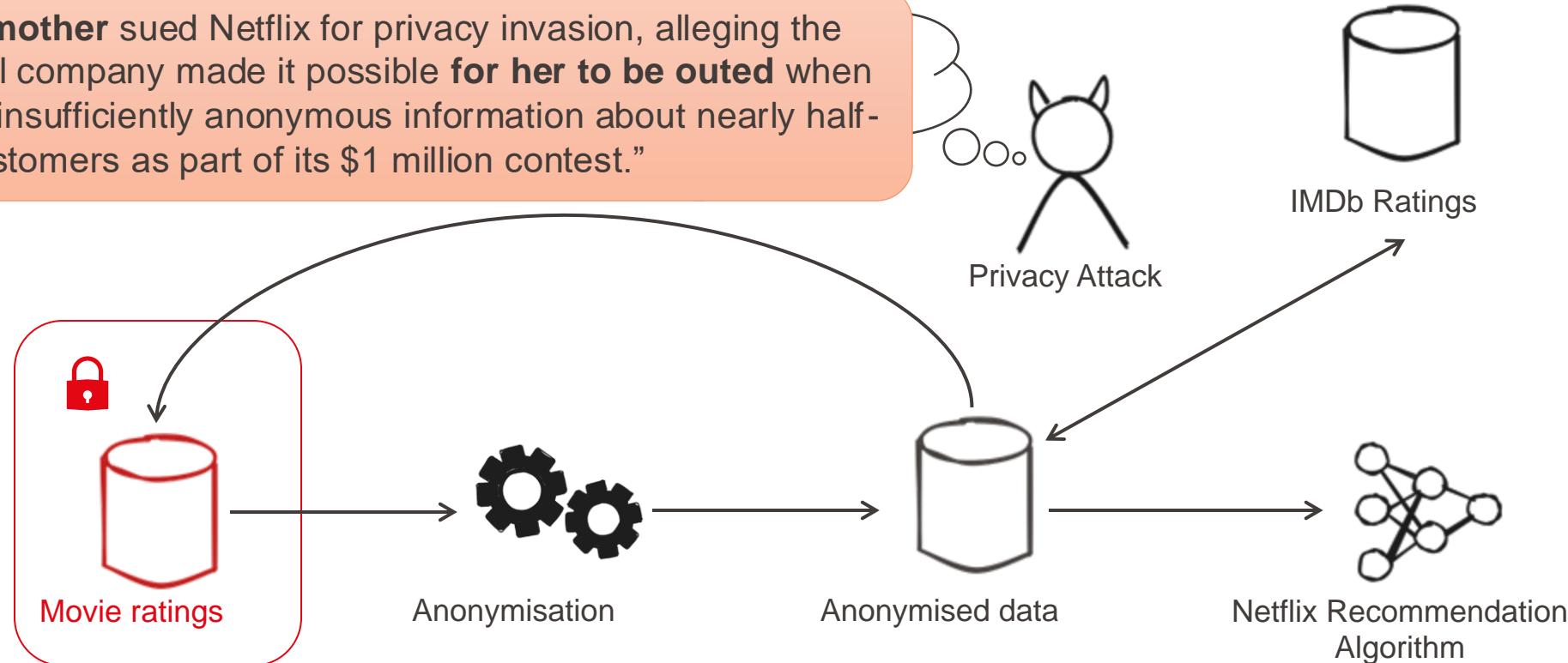
	pulp_fiction	fight_club	the_minions
	3/5	3/5	5/5

“De-identification” shall fail

Another real-life example

“a lesbian mother sued Netflix for privacy invasion, alleging the movie-rental company made it possible for her to be outed when it disclosed insufficiently anonymous information about nearly half-a-million customers as part of its \$1 million contest.”

user	pulp_fiction	fight_club	the_minions
theresa	3/5	3/5	
	5/5		



RYAN SINGEL SECURITY MAR 12, 2010 2:48 PM

WIRED

NetFlix Cancels Recommendation Contest After Privacy Lawsuit

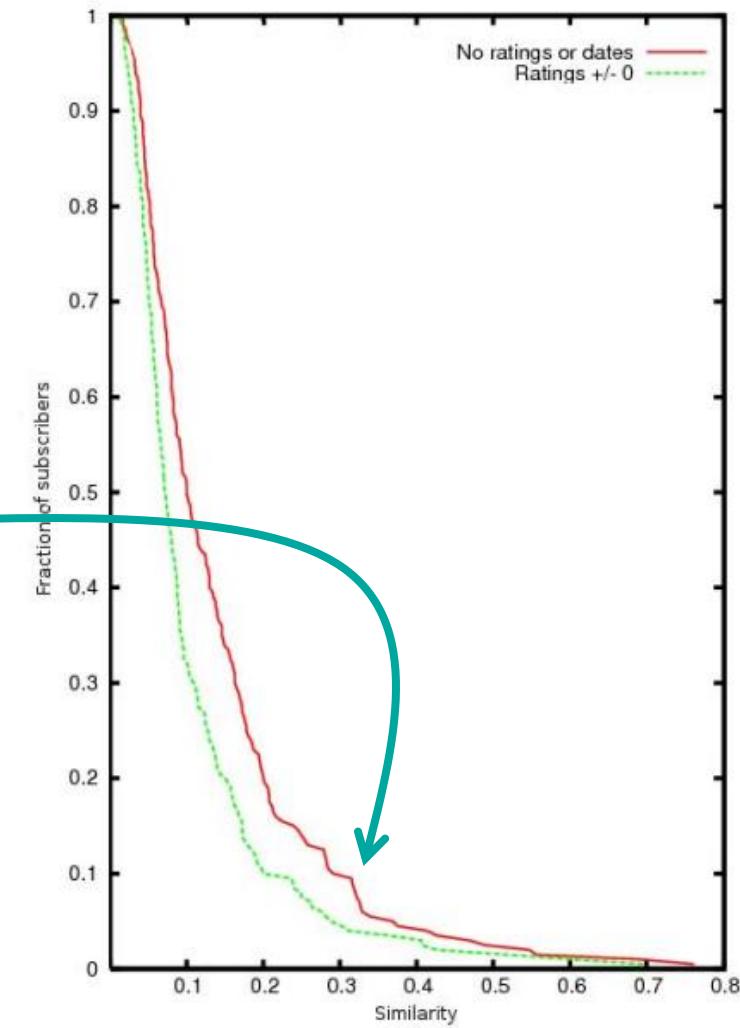
“De-identification” shall fail

Another real-life example

The average record, has **NO** similar records

Netflix prize dataset: for 90% of the records there is no other record that is more than 30% similar (in the spirit of the cosine similarity)

Netflix applied “Perturbation”: but utility must be preserved!



“De-identification” shall fail

Another real-life example

“With 8 movie ratings (of which 2 may be completely wrong) and dates that may have a 14-day error, 99% of records can be uniquely identified in the dataset. For 68%, two ratings and dates (with a 3-day error) are sufficient”

“De-identification” shall fail

Another real-life example

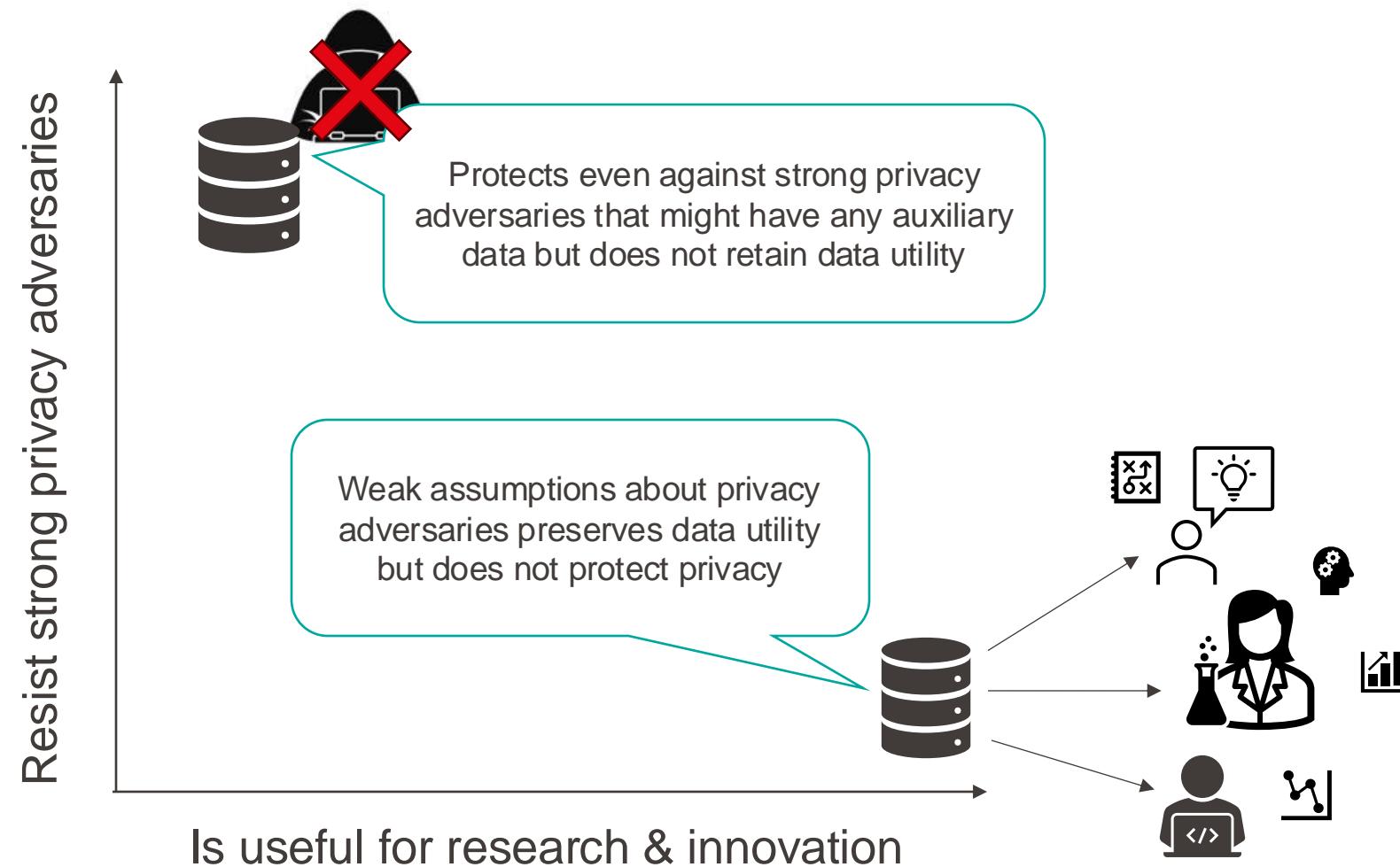
“With 8 movie ratings (of which 2 may be completely wrong) and dates that may have a 14-day error, 99% of records can be uniquely identified in the dataset. For 68%, two ratings and dates (with a 3-day error) are sufficient”

Completely removing PII is not possible. PII has no technical definition, we do not know what will make someone identifiable. It all depends on the adversary’s knowledge

Conclusions

The privacy-utility trade-off

Microdata publishing



So what about Airbnb...

- Airbnb has a **very** concrete goal
 - Needs very few columns, not so sparse – lightly hit by curse of dimensionality
 - Can handle quite some noise
- Airbnb not concerned about public adversaries (only internal)
- Airbnb left hard problems unsolved
 - e.g., removing identifying information in the photos they send to the research partner
they call this de-identification of photos (what does this even mean?)

- Data is a valuable asset but also contains a lot of sensitive information
 - When published or shared widely, it can lead to **significant harm for individuals**
- Privacy-preserving data publishing is an extremely hard problem
 - Whenever we remove information to prevent privacy attacks, we also loose this information for utility purposes
 - Best chance we have at solving the problem is for small datasets with very well defined utility function
- Primary challenge is that we cannot predict an adversary's background knowledge
 - The more high-dimensional the data is the harder this problem becomes